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Disturbance interactions in wave triads and multiwave systems of various con- 
figurations are investigated to reveal the mechanism of laminar-turbulent transition in 
Blasius and pressure-gradient boundary layers. The averaging method of weakly non- 
linear instability theory in quasi-parallel flows is applied. Tollmien-Schlichting-wave 
resonant interaction is shown to be the only leading mechanism of subharmonic (S)- 
type transition. The mechanism universally dominates in boundary layers excited by 
sufficiently small initial disturbances. The role of any other mode is inefficient. Weakly 
nonlinear models are concluded not to explain the K-type transition scenario. The 
results of the study are employed to interpret physical and numerical experimental data. 

1. Introduction 
The problem of transition to turbulence in boundary layers is of great fundamental 

and practical interest in aerohydrodynamics. The scenario for laminar-turbulent 
transition depends on flow type and on excitation conditions (Saric, Kozlov & 
Levchenko 1984; Morkovin & Reshotko 1989), and is characterized by a sequence of 
dominant spectral and spatial field structures. Such behaviour is obviously determined 
by mechanisms which are selected through the competition between interactions of 
disturbances of different scales. Modelling of the dominant mechanisms plays an 
important part in the development of laminar-turbulent transition theory, and is the 
main subject of the present investigation. 

A number of laminar-turbulent transition scenarios have been established in a flat- 
plate boundary layer. In experiments by Klebanoff & Tidstrom (1959) and Klebanoff, 
Tidstrom & Sargent (1962), IS-type transition has been established. It is characterized 
by intense generation of high-frequency harmonics, periodic A-structures of the spatial 
flow field, and the appearance of ‘spikes’ and ‘breakdown’ (Kachanov et al. 1984). 
Attempts were made (Benney & Lin 1960; Stuart 1962; Benney 1962) to model the K- 
rtgime by the evolution of nonlinearly interacting Tollmien-Schlichting (TS) waves 
which form a symmetrical non-resonant triad (figure la) .  Such a triad (we shall refer 
to it as a Benney-Lin (BL) triad) comprises a two-dimensional wave with frequency 
w = w1 and wave vector k,  = (a1,O) and two oblique waves with almost equal fre- 
quencies and phase velocities : w2 = w3 z w l ,  k,(a, ,8), k,(a, -p), CL z al. The results 
achieved agreed qualitatively with experimental data. In particular, they described the 
longitudinal vortices inherent in the K-transition. Nevertheless, the problem of the 
mechanism responsible for the occurrence of three-dimensional periodic disturbances 
was still open. A likely explanation was suggested by Craik (1971, 1980). The 
appearance of an additional two-dimensional wave, with double the fundamental 
frequency, w, = 2w1, and wave vector k, = (2a, 0), was proposed. This two-dimensional 
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FIGURE 1 .  Wave vector diagrams for: (a) a BL-triad; (b)  the CNB-model; 
(c) a subharmonic triad. 

wave formed a symmetrical resonant triad with a pair of oblique waves with wave 
vectors k,,  k, (figure 1 b). Conditions of phase synchronism (resonance) : w4 = w, + w,, 
k,  = k,  + k,, led, according to Craik, to the selection of well-defined directions of the 
three-dimensional wave vectors. The full system of four waves in this model (oJ = 1, 
2,3,4) (we refer to it as the Craik-Nayfeh-Bozatli (CNB) model) was considered by 
Nayfeh & Bozatli (1979) and was analysed by Zelman & Maslennikova (1984, 1989). 
It must be noted that the occurrence of three-dimensionality in the K-rigime may be 
explained as a spontaneous development of spanwise inhomogeneity of the main flow 
or of the initial pulsation field (Volodin & Zelman 1981 ; Itoh 1987; Singer, Reed & 
Ferziger 1989). The efficiency of the CNB-model in explaining K-breakdown needs 
further investigation (see 0 5). 

A qualitatively different route to transition was observed in controlled experiments 
(Kachanov, Kozlov & Levchenko 1977; Thomas & Saric 1981; Kachanov & 
Levchenko 1982) at low amplitudes of the primary wave. The process was characterized 
by the preferential growth of low-frequency pulsations, a broad peak at half the 
fundamental frequency in the power spectrum, a staggered structure of the spatial flow 
field, and no ‘breakdown’ (Saric, Kozlov & Levchenko 1984; Kachanov & Levchenko 
1984; Corke & Mangano 1987, 1989). This transition is known as the subharmonic (S) 
route to transition. Volodin & Zelman (1978, 1981) suggested that the formation of the 
S-rigime could be explained by the resonant interaction (Raetz 1959; Kelly 1967; 
Craik 1971, 1985) of the induced two-dimensional wave with a pair of background 
three-dimensional TS-subharmonics which formed a symmetrical triad of Craik type 
(figure 1 c). That interaction occurred at the first nonlinear order of nonlinear stability 
theory and, in accordance with observations, gave rise to the rapid parametric 
amplification of subharmonics and, further, to explosive growth of all triad 
components. It was established later (Maslennikova & Zelman 1985; Zelman & 
Maslennikova 1984, 1989) that exact phase synchronization (C-triad) was not a 
necessary requirement for the maximum amplification of subharmonics. Similar 
conclusions, based on nonlinear asymptotic theory for large Reynolds numbers, were 
drawn by Smith & Stewart (1987). 

Detailed experiments and numerical simulations (Corke & Mangano 1987; Saric & 
Thomas 1984; Zelman & Maslennikova 1984, 1989; Herbert 1988; Spalart & Yang 
1987) revealed a link between the propagation angle of the selected subharmonics and 
the induced two-dimensional wave amplitude. This dependence was fully consistent 
with results based on the secondary instability method (Orszag & Patera 1983 ; Nayfeh 
1987; Herbert 1988), although the use of this method in the region where primary and 
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secondary wave amplitudes are of the same order may be only formal. Because of 
speculation that resonant amplification of the TS-wave triad was restricted by the 
requirement of exact resonance, the triad model comprising three-dimensional TS- 
waves (Zelman & Maslennikova 1984) has been called into question (Herbert 1983, 
1984; Saric & Thomas 1984), and a link between the observed subharmonics and the 
amplification of Squire modes (H-mechanism) was suggested. Two distinct mechanisms 
were supposed to operate at the S-transition: C, which was responsible for the TS-wave 
amplification in a narrow band of wavenumbers (exact phase synchronism in the C- 
triad) at low two-dimensional amplitude levels, and H, which was applicable in a wide 
spectral band. Questions about the nature of waves which form the dominant triad and 
about corresponding mechanisms were discussed in Saric & Thomas (1984), Smith & 
Stewart (1987), Nayfeh (1987), Zelman & Maslennikova (1 989), Zelman (1 989), and 
are still likely to be of great value for understanding the S-transition. 

In the framework of the isolated triad model, neither the conditions for its 
appearance nor the spectrum transformation playing a direct role in the transition to 
turbulence can be analysed. The effects of interactions between a broad spectrum of 
disturbances must be taken into account. If this is the case, the initial distribution of 
pulsations comes into play. Its influence on laminar-turbulent transition and, in 
particular, on the selection of the dominant structure is another problem for theory. 

In the present investigation we focus on an analysis of the weakly nonlinear 
mechanism of resonant interactions and their role in S-transition in boundary layers. 

In $2 we formulate the problem of weakly nonlinear evolution of wave disturbances 
and present the method for its solution. In $3 the formation and evolution of isolated 
symmetric triads in boundary layers with and without pressure gradients are 
investigated. The mechanism of S-transition and the nature of excited subharmonics 
are discussed. In $4 non-symmetric triads and multiwave systems are considered, to 
model a mechanism for spectral broadening in S-transition. In $5  the models of K- 
breakdown are analysed. In the Conclusions the main results are discussed. 

2. Method 
The principal idea of the methods of weakly nonlinear stability theory has been 

formulated in the pioneering studies of Stuart (1960) and Watson (1960), and 
developed in many works, for example in Itoh (1974), Usher & Craik (1975). An 
application of the averaging method to weakly nonlinear theory suggested by Zelman 
(1974) is presented here. 

We consider a perturbed boundary-layer velocity field 

u = U,(U(X, Y )  + e v x ,  Y ,  2, t>), (2.1) 
where U = (U,  U,, 0) and e V = e(u, u, w) correspond, respectively, to the (x, y ,  z )  
components of the main flow; the disturbance intensity is 6 + 1, and u + (Urn, 0,O) as 
y +  co. Equations for the normal velocity (v) and vorticity (y) components follow from 
the Navier-Stokes system, and in the locally parallel approximation after standard 
non-dimensionalization (using the free-stream velocity U ,  and thickness ( v x /  Urn)$) are 

a2u av  
ay2 ax L(u) L'l'(Av) - __ - = EH, 
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Nonlinear perturbations are assumed to originate from the evolution of infinitesimal 
small-scale pulsations for t < 0, which are defined from solutions of (2.2) and (2.3) 
subject to E + 0, and may be regarded as a series of narrow spectral wave packets : 

@ = (v, 7) = x Jay da 1: dpA(r)(k, t )  &(k, y) eio(') 
r 

A ,  = a,(px, pz, put) erz(k) t ,  8(') = a dx + pz  - o(k)  t ,  
1 

w (k) )  

I 
where 

can be evaluated from linearized theory (if 8') + 0, then 6(') is an Orr-Sommerfeld (0s) 
eigensolution and f(r) follows from the inhomogeneous equation (2.2); if = 0, then 
rj(r) is an eigensolution of the Squire problem (2.2)); p - IAk/k,f < 1 characterizes the 
packet width, with central wave vector k ,  y (arn,/3,); (r, I) denote the mode number 
and wave packet, respectively. Function @@) is assumed to be independent of k 
within the interval k ,  - Ak d k < k ,  + Ak. In the case of the broadband perturbation 
with ,u - 1, the rate of spectrum transformation, proportional to a(A6)(r)/ak, must be 
taken into account (Zelman 1989). 

A correct definition of the nonlinear initial value problem requires a self-consistent 
assignment of all harmonics at t = 0. Our method permits us to overcome this difficulty 
through consideration of 'prehistory ', and to transform the problem into an analysis of 
the nonlinear interaction of wave packets comprising eigensolutions (2.5). 

The main idea of weakly nonlinear stability theory is based on the assumption that 
for finite perturbations 0 < E 3 1, a pulsation field is locally similar to the linear 
field and that the nonlinear distortions become significant only over large scales 
(x, z,  t )  2 (€aO, €Po, EW,)-', where (ao, Po, w,) = O( 1) are typical parameters. Therefore 
nonlinearity may enter into competition only for waves with (Jy,/wJ,p) d E .  Then, 
without loss of generality, we assume ( y L / w z (  - ,u - E ,  and seek the nonlinear solution 
of (2.2), (2.3) in the form 

k = (a, ,8) 2 (ao, Po) 9 E ,  (W = (6, f)(r), d') +iy(r) = '(') 
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Here eN, fsNN = (vsN,  rsN)  are operators and functions to be defined; 8, are phases, for 
some of which (for example, s = I)k,  and w, = w(k,) are linked by the dispersion 
relation of the linear problem; and S is the Kroneker symbol. 

Then we substitute (2.6) into (2.2), (2.3) and average with respect to the small-scale 
variables ( X ,  2, T ) ,  where e-l 9 (a, X, Po Z ,  wo T )  9 1. Equation (2.3) yields 

kT \rx dx L’’ dz [+T dt eiOs{Lv - E H }  = 
at 

The sums ( c = i  i i: 

(2.9a) 

(2.9 b)  

must be carried out over all {mi}, {ni}, ( i  = 1,2,3,4), which take values (mi, ni) = (0, . . . , 
4). 

Also, 
1 x+x z+z +T 

h,, p+q - - XZT 1% dx Iz dz dt ei(ep+Oq-*s), (2.10a) 

hs, p+q = 0 if (Aw = w,  - w, - wq, Ak = k ,  - k ,  - k,) 9 e, (2.10 b) 

- e-Awt+A(a, f l )  (%, z )  if (Aw, Ak) < €, (2.10c) hs, P + q  - 

represents an averaging coeffici5nt. 
Derivatives in operators L,  H act with respect to ‘slow’ variables that raise the 

e-order of corresponding terms. Then, for 8, + B,, equating like powers of e N ,  we have 
for v S N :  

(2.11a) 
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Correspondingly, for the definition of qsN we have (with ' = d/dy): 
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  a2qs, N - 2  aTs,N-l a27s,N-Z 

Re ax2 Re az Re az2 
4 1 + C C C H~~(Cni>,{miJ,fpm,fkg)s N ,m+k+l+Z(m,+n i )  . 

i=l 

(2.12) 

For Bs = 8, (where k,  and w1 correspond via the linear dispersion relation), L,(a, P, o) 
differs from the OS-operator L,(a, p, w + iy) by next €-order quantities with value 
Iy,/wJ - e. Without loss of accuracy we make the substitutionf, =x eYzt and separate 
the OS-operator in the explicit form : 

k, m {nil {mi}  ( 

Then 

and taking into account (2.7) we have for C Z N :  

In order to prevent the secular growth of vzN with respect to the 'fast' variables (x, z ,  
t ) ,  the solvability condition (orthogonality to the solution of the adjoint OS-equation 
v:) has to be satisfied. This defines &;EN as 

where ( f )  = som v:fdy. Substitution of (2.15) in (2.7) leads to a system of I amplitude 
equations. As v $: 0, the expressions for qlN follow immediately from (2.12). 

In the case v = 0 (Squire-mode disturbance), L(') plays the role of the basic operator, 
and the above procedure can be applied in the same manner with respect to qzN.  

First-order (- d) amplitude equations are as follows: 

(2.1 6 a)  
j ,  k 

where 

and (2 .16~)  

denote group velocity and nonlinear interaction coefficients, respectively. At this order, 
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the behaviour of harmonics (s $: I) and of mean flow distortion (s = 0) is defined by the 
locally parallel approximation : 

L s ( 4  P? w> us1 = H,,(~,fi,> m 7  Z-tj), (2.1 7 a)  
W ( C L . , P , ~ ) ? I ~ ~  = - i ~ ' ~ , v , , + ~ I ~ ~ ( ~ l f , o , ~ i f ; o ) ~ ( ~ ,  l+j>,  (2.17b) 

f-z = 2, N,j(b,  = 0$7 {mi = o>,f,,,fi,> = HijCf,,f;). 
Second-order ( N e') amplitude equations have the form 

(2.19) 
Terms containing (a2A/axZ ,  a2A/az2, a2A/ax az) appear due to the dispersion, and 

may be omitted as p < F. 
The first-order equations (2.19) describe a three-wave resonant interaction which in 

the simplest case (if Sljk h,, j+k =+ 0) is realized in the isolated wave triad ( j ,  k,  I) = 1,2, 
3. The four-wave resonance, two- and three-wave non-resonant interaction and self- 
modulation are all accounted by the term C,,, of the next (€,) order. Terms - C$iz) 
correct the effect of three-wave resonance, and appear only in the case of a spatial 
perturbation evolution. 

Some simplifications of (2.19) can be made provided that the primary flow is 
stationary and uniform in the z-direction (circumstances which are realized as far as 
typical experiments with vibrating ribbons in boundary layers are concerned), 
dimensional frequency and spanwise wavenumbers are constant, A,(x, ,  t ,  z )  = A,(x,)  = 
const, wave evolution occurs only in the downstream direction (aA, /a t  = aA,/az = 0), 
and the condition ,u < e holds. 

In the Blasius-type flows of concern, the non-parallelism changes linear growth rates 
noticeably but had little influence on the nonlinear interaction (see, for example, ltoh 
1974; Gaster 1974; Saric & Nayfeh 1975; Zelman & Kakotkin 1982) and can not 
compete with resonant effects, the analysis of which is the purpose of the present work. 
Accounting for non-parallelism in wave evolution will be specially emphasized (5 3.3). 

Until now we have not specified any particular type of linear eigenmodes OZ. In 
boundary-layer flow of Blasius-type, the only modes which are susceptible to effective 
weakly nonlinear amplification are TS waves in the vicinity and within the region of 
the neutral stability curve. The possibility of the Squire-mode participation in S- 
transition will be discussed in a later section. 

3. Symmetrical triads 
3.1. The resonance mechanism 

As mentioned earlier, a possible model for the main structure of S-transition may be 
a symmetric resonant triad of TS-waves (figure 1 c), a special case (0, = 8, + 8,) of 
which was considered for the first time by Craik (1971). In this section we investigate 



456 M .  B.  Zelman and I. I .  Maslennikova 

Re s,, s,, s r  Si 
523 0.2 -0.1 2.75 -0.03 
640 0.23 -0.015 4.51 -0.9 
756 0.3 0.4 8.2 - 3.2 

TABLE 1 .  Interaction coefficients for a symmetrical subharmonic triad. F, = 11 5 x 
PjRe = 0.22 x 

the evolution of resonant triads and its connection with the S-transition mechanism in 
the context of controlled vibrating ribbon experiments. 

We consider a triad of TS-waves with spectral parameters (w,,ctl,pl = 0), (w,  = w,  

a, = u,p2 = p), (w,  = w , a p  = a,p, = -@), w1 = 20 = const, a1-2a = Act. Then 
(2.16a) for A,(x)  = b,(x)exp(i$,), b, = IAJ, 1 = 1,2,3 become 

(3.1 a) 

(3.1 b) 

where we have taken into account that 

Coefficients of equations (3.1) and (3.2) are determined by locally parallel 
Orr-Sommerfeld eigensolutions. This leads to the dependence of the solution of (3. l), 
(3.2) not only on the initial values A,, but on local quantities (Act, p, Re) as well. 

In the numerical calculations which are reported below, the following algorithm is 
used. For given Reynolds number Re, physical frequency and spanwise wavenumbers, 
the OS-problem (2.13) is solved for each wave component. The solution uses an 
orthonormalization scheme. A Newton-Raphson iteration scheme converges to the 
eigenvalues. Then the corresponding vorticity component equations are solved. After 
that the integrals appearing in the definitions of coefficients (2.16b, c)  are numerically 
evaluated. 

This procedure is repeated parametrically for a selected interval of Reynolds 
numbers (parameters PJRe and 6 = @,/Re are kept constant). Then amplitude 
equations (3.1) are solved using a fourth-order-accurate Runge-Kutta procedure. 

In table 1 some typical values of coefficients S, ,  S are shown as an example. 
For typical values a - lod1, E - lo-, we have from (2.10) the estimate 10 < X < lo3, 

and in the following calculations values X = 130 to 150 are used. 
Figure 2 shows the typical behaviour of amplitude b,, and phase A$ = 1c/, - $, - $, 

for b,, > b,, > b3,- In the early stage, Re < Re,, a parametric amplification of 
subharmonics takes place. Their amplitudes b,, b, increase rapidly without changing 
the behaviour of the fundamental wave amplitude b,,  and spontaneously equalize their 
levels: b, = b, = b. When b2 , ,  2 b, (Re 2 Re,) disturbances enter a nonlinear 
development region that involves an explosive amplification of all triad components 
along with phase localization, A$ --f 0. In the region of parametric amplification 
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FIGURE 2. (a)  Amplification curves for triad components : curve 1, two-dimensional fundamental ; 
curves 2, 3, symmetrical subharmonics; (b) Phase localization. F, = 115 x 

(&I B lA2,31) the following conditions come from the ratio of linear and nonlinear 
terms : 

(3.3) 

The first condition ensures an independent two-dimensional wave evolution, and the 
second the predominance of the parametric growth rate over the linear one. 
Coefficients ratios IS/S,l - 10 (see table l), y1 - y ,  which are valid in boundary layers, 
keep the above conditions valid not only when (Al(  B ( A 2 , 3 ( ,  but when (A2,31 x (Al(  as 
well (lyl( > IS, A ( ,  Iy( < (SAl(). This fact ensures the applicability of linear parametric 
analysis (the secondary instability method of Nayfeh 1987 ; Herbert 1988 ; Fischer & 
Dallmann 1991, for example) in the rtgime where it formally fails. We emphasize that 
this circumstance may be clarified only by a nonlinear analysis. 

The process of parametric amplification displays a threshold character. A threshold 
value bl*, above which (i.e. for which b, > b1*) parametric resonance is effective, 
follows from (3.3) as b,, = Iy/Shl. A solution of (3.1) in the region of parametric 
evolution can be expressed in analytic form and points to the double-exponential 
growth of subharmonic amplitudes : 

/?/Re = 0.18 x 

lY1l > l p s , h l ( ,  IYI < IAlShl. 
A ,  

(3.4) 
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10-6 

where 

is a Bessel function, and 
v = f, z” = (ilShl b,, W,/yl) exp (yl x/ w), ~ $ 2 )  = (2/n2)i(C1 sin z”+ c2 cos 2) 

.=----={(F++)+j dA 2Y Y S h w ,  yl A10 I e x p g } .  
A dx (3.5) 

Exponential growth of the amplification rates for b2 , ,  is clearly seen from figure 2. 
Amplification curves for different b, are shown in figure 3, from which the crucial role 
of the two-dimensional wave amplitude can be seen. An initial phase variation A$(x,) 
changes the behaviour of b2, at early stages, but does not influence the amplification 
law as a whole (figure 4). The main effect of variation of the initial values A+,, b2,, b,, 
(figure 5 )  is a shift of the ‘nonlinear point ’ Re, in relation to the neutral curve for two- 
dimensional waves. Thus an equalization bl(Rei) = b(Rei) inside the neutral curve 
(Rei ,< Re, ?,(Re) > 0 )  leads immediately to the growth of all triad components (curve 
1, figure 3): Re, z Rei; whereas outside the neutral curve (y,(Re) < 0) an amplification 
of subharmonics does not prevent the damping of b, (curve 2, figure 3 )  to some level. 
At that level Re, shifts downstream and (Re, - Rei) increases. Further shift of Re, 
towards the stable region may destroy completely the nonlinear interaction (Re, +- m )  
(curve 3, figure 3). Nevertheless, in all cases the resonant interaction in symmetrical 
TS-triads demonstrates the existence of a mechanism leading to rapid growth 
of perturbations with half the fundamental frequency, and to the spontaneous 
symmetrization of the three-dimensional oscillation field, which are the properties 
inherent in S-transition (Kachanov & Levchenko 1982, 1984; Corke & Mangano 1989). 

3.2. Preferred waue angles 
The mechanism described above has been established as effective for a wide range of 
wave vectors k2, of the oblique waves comprising a resonant triad. The occurrence of 
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FIGURE 4. Amplification curves for various initial phases A+,,: curve 1, 0; curve 2, ;TI; curve 3, TI.  

F, = 115 x p / R e  = 0.18 x 
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FIGURE 5.  Amplification curves for various subharmonic initial amplitudes : solid lines, two- 
dimensional fundamental; dashed lines, subharmonics. F, = 115 x P/Re = 0.18 x 

S-transition spatial structure arising from a homogeneous spectrum of background 
disturbances, poses the problem of preferential wave angles. To study this problem the 
relationship between subharmonic amplification rate and wave angle h = I/3/oll was 
considered. Parametric growth rate is related to h through the coefficients of amplitude 
equations (3.1). Figure 6(a) shows the variation of 1Sb,,J and JhJ with A. It is easy to see 
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FIGURE 6. (a) Variation of JSb,,J (curves 1, 2) and 1/11 (curve 3) with A :  curve 1, b,, = 2, 
b,, = 2 x Re = 640, X = 130. (b) Local growth rate versus h for various two- 
dimensional wave amplitudes: curve 1, b,(Re,,) = 0.0014; 2, 0.0021; 3, 0.0028; 4, 0.0032; 5,  0.004; 6, 
0.0053; 4 = 115 x lo-'; Re = 640. Preferred A m  for (F, = 115 x Re = 640) (curve 7) and 
(F, = 75 x 

F, = 115 x 

Re = 890) (curve 8). Experimental points are from Corke & Mangano (1989). 

that ISb,,l and Ih( are growing, and Gaussian-like functions of A, respectively. As a result 
the parametric growth rate a(A, blo) reaches the maximum value CT, for certain a A, 
depending on the initial amplitude of the two-dimensional TS wave. Figure 6 (6) shows 
the growth rate a(A)  for various amplitude levels blo. For b,, x b,, (weak 
supercriticality), A, = 1 which corresponds to Craik's triad with 8, = 8, + O3 (curve 1 , 
figure 6b). Once the amplitude of the two-dimensional wave increases, the region where 
u > 0 grows, and grn shifts towards a higher value of A (curves 2-6, figure 6b)  (where 
Aa $: 0) and reaches an asymptote at A, z 2. Calculations showed that the function 
A, = A,(blO) is invariant with respect to w and Re (curve 7, figure 6b). This implies that 
the selected disturbance with the maximum growth maintains the propagation angle 
defined by the same function A,(b,,) throughout the downstream evolution (curve 5 ,  
figure 7). In the case of a homogeneous background, a selection of oscillations with 
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h 
FIGURE 7. Subharmonic intensities u2 for various b, (Re,,): curve 1, 0.25 YO; 2, 0.35 %; 3, 0.43 YO; 

4, 0.5 %. Preferred A,,, (curve 5). 4 = 115 x Re = 640. 

r 0 

0.25 0.50 0.75 

FIGURE 8. The value of h for the most amplified subharmonics as a function of r.m.s. intensity of the 
two-dimensional fundamental (curve). Curve 2, the same but with non-parallelism. Experimental 
data: A, Saric et al. (1984); 0,  Saric & Thomas (1984); x ,  +, Kachanov & Levchenko (1984). 

respect to their amplification rates provides a selection of waves whose amplitudes 
dominate with the corresponding directions of propagation. The angular distribution 
of the disturbance field is determined by the initial amplitudes of the two-dimensional 
wave. 

3.3. Comparison with experiments and computations 
The results obtained completely explain the process of formation and further 
development of the S-transition dominant structures seen in experiments. Figure 8 
shows the function A,(u,,) (curve l), where uII repreents the two-dimensional wave 
velocity on the upper branch of the stability diagram. Accounting for non-parallelism 
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FIGURE 10. Amplification curves for different two-dimensional wave intensities (curves 14) .  Dashed 
curves represent the present investigation, solid curves the numerical experiment by Spalart & Yang 
(1987). Symbols x mark a two-dimensional wave. F, = 76 x 

(Zelman & Kakotkin 1982) shifts the middle part of curve 1 and produces excellent 
agreement between the theory (curve 2) and observations. Numerically obtained 
growth rates versus wave angles (curve 3, figure 6) practically coincide with 
experimental data by Corke & Mangano (1989). Amplification curves for triad 
components (figure 9) demonstrate good agreement with the observations by Saric 
et al. (1984). The different behaviour of the amplitudes (‘dog’s leg’) in the early stages 
of interaction (Re < 700) can be explained by the imperfection of experiments (Thomas 
1983; Saric et al. 1984). At the stage, Re > Re,, of essentially nonlinear development 
((6,bJ > lo-’) higher-order nonlinear effects come into play. 

Our numerical results (figure lo), based on (3.1), are consistent with the data from 
computational simulations of the Navier-Stokes equations (Spalart & Yang 1987) and 
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with those (curve 8, figure 6) obtained by the secondary instability method (Herbert 
1984). All this supports the capability of the elementary model including TS-triads to 
provide a satisfactory explanation and a quantitative characterization of the S- 
transition dominant structure. 

3.4. TS and Squire modes in Blasius flow 
As mentioned in the Introduction, the problem of the nature of subharmonic waves in 
S-transition in Blasius flow is still of principle significance. This problem originated 
from speculation about two different (C and H) mechanisms (Saric & Thomas 1984; 
Herbert 1988) which could be responsible for the dominant structure of the S- 
transition. The C-mechanism was attributed to the evolution of the perfectly 
synchronized (Aa = 0) TS-triad, and was expected to operate at low amplitudes of the 
two-dimensional wave. The H-mechanism was expected to operate over a wide range 
of two-dimensional wave amplitudes, and to originate from the selection of Squire 
modes (Herbert 1983, 1984). 

To clarify the role of Squire vortices in S-transition we have analysed the solution 
of the homogeneous equation (2.2). Figure 11 displays the real and imaginary parts of 
the phase velocity c, which is invariant with respect to /3 with an accuracy of O(Re-'). 
It can be seen from this figure that Squire modes are highly damped over the whole 
range of Re where two-dimensional TS-modes are unstable (IyJ - us, ys < 0). At that 
condition, the fundamental TS-wave and Squire subharmonics are far from resonance : 

I%s(24 -2%,(4 I - Ir&> I - l%l. 
It should be noted that according to our numerical results the TS-wave velocities are 

significantly higher than those for Squire modes : max IvF/vyI < 0.1 provided that the 
initial intensities of vortices, max lyo(y)l, are equal. That makes an excitation of Squire 
modes all the more difficult. Moreover, the local streamwise velocity y-profile of the 
Squire subharmonic is quite different from that for TS-modes, which is entirely 
consistent with the observations (figure 12). The properties noted indicate the lack of 
effective weakly nonlinear interaction between TS-fundamental and Squire sub- 
harmonics in Blasius flow and prevents the amplification of Squire modes at the low 
amplitudes of interest. Therefore, the participation of Squire modes in S-transition on 
a flat plate is hardly probable. At the same time, the analysis of TS-triad evolution 
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FIGURE 12. Normalized local velocity profiles for TS (curve 1) and Squire (curve 2) subharmonics. 

Experimental data by Kachanov & Levchenko (1984). 

provides an adequate explanation of the S-transition process. (Note that the nature of 
the waves which provide the dominant structure of S-transition may be experimentally 
tested by pressure gradient measurements across the boundary layer. This value in the 
Squire modes is constant, quite unlike the TS-modes.) The H-mechanism concept 
originated primarily from the investigation of Poiseuille flow (Herbert 1983), where 
resonance in TS-triads with symmetrical OS-eigenfunctions is inoperative. But the 
speculation noted is doubtful even in Poiseuille flow, because the occurrence of 
resonant TS-triads may be explained on the basis of non-symmetrical OS-solutions 
(with respect to the channel axis) (Goldshtik, Lifshits & Stern 1984; Zhao & Zhao 
1988). 

We conclude that the suggested mechanism for formation of the S-transition 
dominant structure in Blasius boundary layer has a universal character, and it 
is connected with the selection and symmetrization of background three-dimensional 
TS-disturbances which propagate in the direction determined by the primary TS-wave. 
As a result, the dominant symmetrical TS-triad is formed (with the C-triad as a special 
case at low two-dimensional wave amplitudes). 

3.5. Streamwise pressure gradient 
The features of S-transition in boundary layers with a streamwise pressure gradient is 
of practical interest. The problem was treated in Herbert & Bertolotti (1985) by the 
secondary instability method. We considered (Zelman & Maslennikova 1989) pressure 
gradient effects on the formation and evolution of symmetrical TS-triads with 
Falkner-Skan profiles as a model problem. In this case U,(x) - xml and the local 
pressure gradient V p  = i3p/dx - m, where m = 2m,/(m, + 1). 

The system of amplitude equations and procedure for obtaining coefficients does not 
differ from the case of Blasius flow, (3.1) and (3.2). 

Numerical results showed that the pressure gradient V p  $; 0 did not change the 
general picture of the evolution of resonant TS-triads. Coefficients SLj,  changed 
weakly, so the variation of subharmonic amplification rates was defined by changes in 
the two-dimensional wave linear growth rates. Figure 13 presents a comparison of triad 
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FIGURE 13. Amplification curves for Falkner-Skan profiles (solid curves, fundamental; dashed 
curves, subharmonics) for m = -0.1 (curve l) ,  m = 0 (2) ,  m = 0.1 (3). F, = 115 x lo-‘. 

evolution, for m = - O . l , O ,  +0.1, along a fixed dimensional interval (xo,xl). Growth 
rates of all triad components increased when the pressure gradient changed from 
positive (m > 0) to negative (m < 0). The three-dimensional wave selection mechanism 
which was responsible for the dominant structure operated at the parametric stage, and 
was associated with the dependence of (hi,,+,, S,,,) on h just in Blasius flow. In the case 
m > 0 (as well as m = 0) the function hm(bl,) turned out to be constant with respect to 
Re, in contrast wih  the case m < 0 where hm(bl,) increased with increasing Re, and for 
different b,, varied in the range 1.2 < A ,  < 3. Such behaviour caused a spatial 
spectrum broadening of the background disturbances excited in the evolution process. 
Along with increased linear growth rates, the spectrum broadening served as an extra 
destabilizing factor. The second special feature of flows with m < 0 was a reduction in 
the size of the nonlinear interaction region: explosive growth of triad components 
began immediately at the location Rei = Re, where all amplitudes became equal. 

4. Non-symmetrical and multiwave interactions 
4.1. Interaction in a five-wave system 

Although the symmetric subharmonic triad considered in the preceding section enables 
us to model the basic structure of S-transition, it is a very simplified model. Since there 
is a broad spectrum of disturbances which can interact resonantly with the primary 
two-dimensional wave, the problem for their mutual interaction arises. The simplest 
model accounting for this effect is a five-wave system comprising a two-dimensional 
wave (Al, 2wl, al, p1 = 0) and two pairs of three-dimensional waves (A2,  3, w2, = w, 

a2 = u3, /I2 = -/I3), (A4, 5, w4, = w ,  a4 = a5, p4 = -/I5). Close to the resonances 
(hi, 1+, x exp i(B, + 8, - 80, (iJ, k )  = 1 ,  . . . , 5 )  equations (2 .16~)  take the form 

= ’1,2+3 ’2 ’3+’1, 4+5 ’4 ‘5+&, 4+3(’4 ‘3+’5 ’21, (4.1 

(4.1 b)  

(4.1 c) 
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FIGURE 14. Amplification curves for five-wave system, (a)  with and (h)  without cross-interactions. 

F , =  1 1 5 ~ 1 0  ' , / l I ' , / R r = 0 . 1 7 I ~ I O ~ " , / ~ , / R ~ = U . 1 5 ~ 1 0 - ~ .  

where 

, I -  

Figure 14(a) shows an example of the amplitude evolution of such a five-wave system. 
Along with interactions in symmetrical triads, interactions in non-symmetrical triads 
occur, and are accounted for by the terms which contain Sl, k3, S2, ,p5, S4. A rapid 
growth of three-dimensional waves and equalization of their amplitudes originate from 
non-symmetrical interactions as was found by Maslennikova & Zelman (1 985), and 
Zelman & Maslennikova (1985). The rate of spectrum excitation was found to be much 
less in the absence of such interactions (see figure 14h). It may be concluded that low- 
frequency spectrum broadening, clearly observed in S-transition (Corke & Mangano 
1989), occurred not only because of the evolution of wave packets comprising 
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FIGURE 15. Normalized maximum parametrical growth rates for detuned subharmonics versus 

detuning parameter 6 at different b,(Re,,): 0.0022 (curve l), 0.0017 (curve 2). 

independent symmetrical wave pairs, but also as a result of cross-exchange between 
them. Spatial localization of disturbances obtained in our calculations is supported by 
more general analysis of wave packet evolution (Gaster 1984; Zelman & Smorodsky 
1988). 

4.2. Interaction in detuned triads 
In connection with the results presented above, the analysis of interaction in a triad of 
arbitrary type is of substantial interest. 

We restrict our attention to analysis of the evolution of frequency-locked waves 
( j  = 1,2,3), w1 = w 2  + w ,  with arbitrary wave vectors. Equations (2.16a) take the form 

I 

A c ~  = CL.~-CC,-E,, Ai3 = /31-/32-/33, 

B2,  = A 2 ,  exp [$i(Aax + Apz) ] .  

We considered in Zelman & Maslennikova (1992) the effects of low-frequency 
three-dimensional disturbance excitation in the field of a two-dimensional wave with 
k ,  = (a1,& = 0). For this purpose a parametric growth rate 

- v2, 3(b10, /32, w23 @ 3  = w1 - w2> 
db, 3 

b,', - 
dx 

was analysed. Figure 15 shows c?( k 6 )  = maxB v2, , versus the detuning parameter 
5 = 1 -2w,/w, for various blo. It can be seen that 3 has a maximum at 5 = 0, which 
corresponds to the symmetrical triads investigated in 9 3. This proves their dominant 
role in the structure of S-transition. At the same time, the curves in figure 15 show the 
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FIGURE 16. Amplification curves for detuned triad components at A$o = 0 (dashed curves 2, 3) and 
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possibility of broadband spectrum excitation near half of the primary wave frequency. 
Such spectrum broadening is a typical feature of S-transition (Corke & Mangano 1989 ; 
Kachanov et al. 1984). Triad investigation in the general case Pj ?= 0 shows a rapid 
increase of low-frequency large-scale waves in the parametric region and supports the 
dominant role of symmetrical subharmonic triads in the transition process. However, 
some specific features were established. Subharmonic amplification rates were reduced, 
and in some cases the explosive growth in the nonlinear region was not realized. The 
evolution picture became more sensitive to the conditions of disturbance excitation, as 
can be seen from figure 16, where the behaviour of bj(Re) is shown for various initial 
phases A$,,. It may be speculated that the sensitivity noted can promote the 
stochastization of the transitional flow field. 

An interaction in non-symmetrical triads causes not only a spectrum broadening, 
but may be responsible for the formation of the dominant structure. Suitable 
conditions arise in inhomogeneous initial distributions of disturbances, as, for 
example, when three-dimensional waves are artificially induced in the flow. Such 
situation was probably realized in the experiment of Saric & Reynolds (1980). An 
excitation of oscillations with frequencies and 4 led to anomalous growth of 
frequencies F, and 4. Maslennikova & Zelman (1985) and Zelman & Maslennikova 
(1985) suggested that these observations could be explained by the formation and the 
evolution of detuned triads comprising two-dimensional wave 4 and a pair of three- 
dimensional waves 4, (4 = 4 +4). A good correlation between experimental data 
and calculated disturbance velocities seems to support our speculation (figure 17). 

The process of detuned mode generation in the experiments of Corke & Mangano 
(1989), where a two-dimensional wave with frequency 4 and a symmetrical pair 
(a, = a3, p, = -p3, F, = 4 = i4 - AF)  have been initially introduced into the flow, 
may be explained in the same manner. We suggest that the primary waves interact with 
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PJRe = 0.168 x P3/Re = 0.263 x in comparison with the experiment by 
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FIGURE 18. Amplification curves for multiwave detuned system: the numbers on the curves 
correspond to t h e j  of 4. F, = 88 x &,, = = 

<3,14 = & - & 1 2  = 20.5 x 

F, ,3  = 39.5 x 4,6 = F, -& = 48.5 x 
4 4 ~  F, = 2& = 79 x F,, , ,  = & - F , , ,  = 30.5 x el,l2 = 4-F,,lo = 57.5 x 

Dashed curve shows three-dimensional wave 4 = 4. 

background disturbances and form resonant triads of symmetrical and non- 
symmetrical types. Interaction between & and 4.,3 leads to the growth of three- 
dimensional (&, = < - &, s, &, , = ;&) and two-dimensional (F,  = 24)  background 
disturbances. At the next step, a resonance between F, and & , 5  leads to the growth of 
three-dimensional waves with 4, and so on. Simultaneously two-wave non-resonant 
interaction occurs, which causes particularly intense amplification of a three- 
dimensional mode (- A;. ,) of fundamental frequency F, = &. Numerical results for 
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FIGURE 19. Active control of transition. Disturbance intensity behaviour in comparison with Thomas 
(1983) (symbols). Curve-1, the first vikrator only; curve 2 ,  the second vibrator only; curve 3, two 
vibrators with b,(x,) = b,(x,), $(x,) -q5(x1) = 0 .96~ .  F, = I10 x 

amplitude evolution based on the first-order equations (2.16a) are shown in figure 18. 
The detailed comparison in Zelman & Maslennikova (1992) reveals good agreement 
between the theoretical and experimental data. 

Our results demonstrate the essential role of resonant interactions in detuned 
transition (transition due to detuned wave interaction), primarily as a mechanism for 
energy cascade to three-dimensional low-frequency large-scale disturbances. The 
effects of disturbance growth stabilization have not been achieved in the framework of 
the approximation used. 

4.3. Actiae transition control 
The effectiveness of the model comprising resonant TS-triads may be demonstrated in 
an analysis of the experiment by Thomas (1983) on the control of boundary-layer 
transition using a wave superposition principle. According to Thomas (1983), at two 
downstream positions x, and x, (x, < x,), two harmonic disturbances of frequency w ,  
were induced into the boundary layer. They may be thought of as waves with complex 
amplitudes A ,  and i,, respectively. A rapid amplification of quasi-two-dimensional 
TS-waves with frequency w ,  was detected in the regimes of individual operation of each 
vibrator (b, =+ 0, 6, = 0 and b, = 0, 6, =t= 0). It was noticed that if b,(x,) = 6,(xl), then 
the disturbance intensity originating from the second vibrator was much higher in the 
region x > x1 (figure 19). When both vibrators were in use, and under the conditions 
(b,(x,) = 6,(xl), @(xJ = &x,) + n), a sharp reduction in wave intensity was observed in 
the vicinity of x NN xl. This was followed by a region of linear development, and then 
a new rapid growth occurred (figure 19). The explosive character of the amplification, 
and the intense subharmonical wave (w = !p,) detected in the power spectrum suggests 
that such amplitude behaviour is the result of nonlinear resonance between induced 
two-dimensional waves and the three-dimensional background. As a model problem 
we considered the evolution of two pairs of TS-triads excited at x, and x,. These triads 
included oblique waves propagating in the direction which corresponds to gm. The 
results are presented in figure 19. Initial values bz,3(xo)  = 5 x 
were chosen to match the growth of b, and 6, in the individual regimes. The difference 
between initial values b,(x,) and 6,(x,) can be explained. apparently, by the fact that 
the location x = x, was situated in the region of rapid attenuation of three-dimensional 
waves, in contrast with x, which was situated in the unstable region. The calculated 

h2,Jx1) = 2 x 
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resulting wave [ A ,  -t 2,I = h(x)  obtained with &x) = 0.967c, b = 6, displays complete 
agreement with experimental data. The observed nonlinear growth of b(x)  may be 
explained by the nonlinear influence of three-dimensional waves which were amplified 
in the interval x,) d x 6 xl. The efficiency of boundary-layer control was analysed by 
Zelman & Maslennikova (1987) on the basis of the present model. 

5. Higher-order effects 
5.1. Excitation of harmonics 

The resonant interactions considered in the previous section, promote the growth of 
disturbance intensities. Nonlinear effects of the next order of magnitude then come into 
play. In the case of controlled experiments, they are related first to two-dimensional 
wave self-interaction (harmonic generation and mean flow distortion) and non- 
resonant (two-wave) interaction with subharmonics. An example of numerical results 
obtained on the basis of equation (2.1 1) is shown on figure 20. It represents 
the cross-layer distribution of free-stream velocity for harmonics u, = B,q &(y)  with 
(ws, a,, p,) = {(&, a,  +a,, p2), (20,, 2a,, O), (iw,. 2a, + a2, /I,)). The behaviour of B, and 
ClS shows a good correlation with experimental data and with data obtained from 
numerical simulations (Kachanov et al. 1984; Fasel, Rist & Konzelman 1987). (Note 
that according to our calculations, the y-distribution of u", (w,  = &,) can change 
considerably, depending on downstream position and p/a  (figure 20). 

5.2. Analysis of BL- and CNB-models 

Excitation of harmonics can initiate new resonant interactions with the background. 
In particular, BL-triads can appear. In order to analyse their competitiveness, we 
considered the TS-wave system ( j  = 1, . . . , 5 )  comprising a two-dimensional 
wave (q, a,, p1 = 0) and two symmetrical pairs: (w2, jr a, = a3, fl? = -p3) and 
(w4, = a4 = as,  p, = 8,). In this system the waves formed two types of triads : resonant 
(, j  = 1,2,3) and BL ( j  = 1,4,5). Amplitude equations for IA,J 2 /A , \  are 

(5.1 b)  

+ m,, (1  + , ) + A  + s4, (1+4j -,JIA,I2A,, 5' (5.1 c)  

The excitation o f  A4,,5 was connected with the nonlinear generation of two- and three- 
dimensional harmonics ( - A: and - A ,  A4,  respectively) and the mean flow distortion 
(- JA,I2 and - A ,  A:,,).  The model given here may be thought as a generalization o f  
those which considered the effects of wave self-interaction (Zelman & Maslennikova 
1984, 1989) or secondary instability in the field of a linear two-dimensional wave 
(Herbert 1988). Now we shall show that our model can be incorporated into the CNB- 
model (Nayfeh & Bozatli 1979) which includes a two-dimensional wave A ,  and three- 
dimensional waves A4,  s, both with fundamental frequency w,, and a two-dimensional 
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wave with parameters (A,,  w, = 2w1, SI, = a(2w), p = 0), but A 2 ,  = 0. In this case the 
second-order amplitude equations take the form 

( 5 . 2 ~ )  

(W,,&-yo)A0 = e S , , A , A , e i A ~ + ~ S 0 2 A ~ h l , 0 - l ,  (5.2b) 

A4,  = cS03 A ,  A:, ePiA1, (5.2b) 

where A, = f (a, - 2a,) dx, and So, Sot can be calculated according to the general 
procedure (see $2) .  

We seek a solution of (5.2) in the form A ,  = A,,+A, , ,  where A,,, A,,  satisfy (5.2) 
with So, = 0 and Sol = 0, respectively. Taking into account that the wavenumbers 
of harmonic and 0s eigenvalues for the given w, = 2w1 are quite different: 
A = ao(2w,)-2a(wl) 9 e,  /z~,,-~ x 0, A, - aA,,/axA, 4 A, and noting the condition 
-yo 9 IS,, A ,  A5/A,I, realized in the CNB-model (Nayfeh & Bozatli 1979), we 
obtain the following equations : 

(5.3 a) 

(5.3b) 

(5.3 c) 

Equations (5.3) describe the resonant interaction between a pair of three-dimensional 
TS-waves and the second harmonic of the two-dimensional fundamental. Concerning 
equations (5.1) this effect (modulation instability) is accounted for by the terms 
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FIGURE 21. Competition of primary and subharmonic resonances. Amplitude growth : curve 1, 
fundamental ; 2, three-dimensional subharmonic ; 3, three-dimensional fundamental, A = 1.6 ; 4, 
three-dimensional fundamental without the ul-s term. F, = 59 x 

proportional to S4, (l+l)-5. Numerical results based on equations (5.1) and (5.3) 
(Zelman & Maslennikova 1984) showed quantitative agreement with results of Nayfeh 
& Bozatli (1979). 

Figure 21 displays typical behaviour obtained from the full system (5.1) (Zelman & 
Maslennikova 1989). The generation of longitudinal quasi-steady vortices - u, A ,  A t ,  
was established as the basic mechanism of A4,5  amplification (see figure 21). Other 
types of interaction led to A4, , amplification only in the region of explosive growth of 
the fundamental wave caused by subharmonic resonance (for ]A2,  3) > ]A , ] )  or by self- 
interaction (for )A,) > In both cases the analysis went beyond 
the region of applicability of weakly nonlinear theory, as well as of the secondary 
instability method. The intensity of the longitudinal vortex and the A4,,  growth rate 
depended critically on the detuning parameter A@, Re, o) = a, -a4, and reached 
maximum values as A -f 8, 4 1. 

y )  and corresponding amplification curves for 
various p/a are shown in figure 22(a, b). It can be seen that subharmonic amplification 
dominates in the process. Amplification rates for three-dimensional waves in the BL- 
triad become comparable with those for subharmonics only in the limiting case where 
weakly nonlinear theory is applicable: lAlo] > lop2. The mechanism of nonlinear 
interactions promotes energy transfer along the spectrum but, in our opinion, is not 
able to change the type of transition - in particular, to set up K-breakdown in which 
high-frequency intensities are much higher than low-frequency ones. (For ]A,,] - 
and a high background level of fundamentals, the type of transition can be qualified 
as intermediate.) Keeping in mind the results presented, we may conclude that theories 
(Craik 1980; Kachanov 1987) based on the weakly nonlinear interaction mechanism 
are hardly successful in explaining the appearance of K-transition. A sufficient 
shortcoming of these theories is their lack of explanation for suppression of low- 
frequency amplification. According to Zelman (1989), this phenomenon can be a result 
of strong nonlinear distortion of the two-dimensional wave vorticity field in the vicinity 
of its critical layer, which reduces the parametric growth of background perturbations. 

] E l  A,]  > 3 x 

Local cross-layer distributions of 

16 FLM 252 
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FIGURE 22. (a) Normalized local velocity profiles at Re = 1120, 1150, 1180 (curves 1-3); h = 1.6. 
(b)  Amplitude growth: curve 1 ,  two-dimensional fundamental ; 2, three-dimensional subharmonics, 
h = 2; 3-5, three-dimensional fundamental with h = 1, 1.4, 1.6 respectively. F, = 59 x 

6. Conclusions 
The present investigation revealed S-transition to originate from interaction of TS- 

waves considered by the first-order weakly nonlinear theory. Interaction of such a kind 
promotes a selection of dominant structure which was found to be a resonant wave 
triad comprising one two-dimensional high-frequency and two three-dimensional low- 
frequency waves. The selectivity can occur through the pre-existing domination in the 
spectrum of relevant waves, or through the selection of waves according to their 
growth rates provided the background is homogeneous. In the latter case, which is 
typical for vibrating ribbon experiments, the dominant structure was revealed to be a 
symmetrical subharmonic triad. The direction of propagation of the three-dimensional 
waves (angle structure) turned out to be defined by the initial intensity of the two- 
dimensional primary wave. Symmetrization (amplitude equalization for the waves 
propagating to the right and to the left with respect to the downstream direction) arose 
spontaneously as the waves propagated downstream. The mechanism of amplification 
of three-dimensional low-frequency waves appeared to be a parametric resonance in 
the field of the two-dimensional fundamental. 

Parametric amplification causes a superexponential growth of three-dimensional 
wave intensity, and continues up to the stage (Re = Re,) where it exceeds the 
fundamental wave intensity. Then a nonlinear interaction initiates an explosive growth 
of all the waves involved. Local amplification rate depends both on the wave 
parameters and the location (Reynolds number) with respect to the two-dimensional 
wave neutral stability curve. It should be emphasized that the maximum resonant 
growth rates generally occur in triads which are far from exact synchronization : 
A0 $. 0. The selection of structures with A0 = 0 (C-mechanism) happens at low two- 
dimensional wave intensity. At the same time the H-mechanism hardly operates, owing 
to the weak amplification of Squire-mode disturbances and the incompatibility of their 
y-profiles with experimental data. 

Simultaneously with the selection of dominant structure, the three-wave resonant 
mechanism promotes energy transformation to a broadband spectrum of low- 
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frequency three-dimensional disturbances. The broadening of the large-scale low- 
frequency spectrum, being a principal feature of S-transition, can be modelled by a 
multiwave system comprising interacting TS-waves in which a cascade process occurs. 
Results achieved permit us to explain some experimental data, and demonstrate good 
agreement with observations as well as with computer simulations of Navier-Stokes 
equations in practically all available cases. 

Analysis of next-order effects reveals a good correlation between numerically 
obtained results and experimental data on y-profiles and on growth rates for higher 
harmonics, and permits us to estimate the competitiveness of resonant and non- 
resonant BL-triads, which were supposed to be responsible for K-transition. This 
analysis shows that the CNB-model involves only one type of interaction which takes 
place in the BL-triad (modulation instability). This instability indeed promotes an 
amplification of a symmetrical pair of three-dimensional fundamental waves, but this 
process is much weaker than the interaction of a two-dimensional wave with 
iongitudinal quasi-steady vortices. Nevertheless none of the above effects influences the 
dominant amplification of the low-frequency component unless initial intensities do 
not exceed the level of 1 %  of U,. This conclusion remains valid in the case of 
boundary layers with downstream pressure gradient. We may conclude that the 
principal feature of the initial stage of S-transition is the preferential growth of three- 
dimensional low-frequency TS-disturbances determined by a universal resonant 
interaction mechanism. This type of laminar-turbulent transition seems to be the only 
one possible in boundary layers with ( A (  < loF2. (The appearance of a K-type of 
transition for [ A (  > we suppose to be connected with nonlinear redistribution of 
vorticity in the dominant wave critical layer (Zelman 1989).) 

It should be emphasized that the idea of transition as a universal process which 
includes a long interval of parametric amplification of the background in the field of 
unstable quasi-linear waves enables us to suggest a rational interpretation of the eN- 
method for the definition of the transition location Re,, (Jaffe, Okamura & Smith 
1970). Actually, under natural conditions the level of the initial disturbances hardly 
changes. Then the location of the nonlinear regime Re x Re, is defined by the linear 
growth rate of the most amplified mode. In Zelman & Maslennikova (1987) a 
suggestion was made, further supported by experiment (Corke & Mangano 1989), that 
the saturation of nonlinear explosive growth in triads takes place close to Re,, in 
the region where turbulence can be said to have occurred. If this is the case, then 
Re, z Rtr. That explains the link between linear amplification of the most unstable 
wave and the location of transition. This speculation was supported by numerical 
results on a transitional airfoil (Zelman & Maslennikova 1987). Note, however, that 
the nature of the primary wave (crossflow instability, Gortler vortices, etc.) is not 
important. 

The authors wish to express thanks to Professor V. Ya. Levchenko and Dr B. V. 
Smorodsky who have influenced this work by their stimulating discussion. 
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